We’ve discussed before the “trigonometric harmonic” series $\sum_{n=1}^\infty\cos n/n$. In particular, we showed that the series converges (conditionally). The argument involved the partial sums of the sequence $\{\cos n\}_{n=1}^\infty$, and we denoted these by $C(m)$. The closed-form expression we found for $C(m)$ involved the quantity $\cos m-\cos(m+1)$; in this post we show that this expression can also be written in the alternative form $2\sin(1/2)\sin(m+1/2)$.