The value of the trigonometric harmonic series revisited

Shortly after my last post I realized there was a simpler way of determining the exact value of the series $\sum_{n=1}^\infty\cos n/n$. Instead of following the method I previously described which required the intricate analysis of some integrals, one can simply use the formula

\[ \sum_{n=1}^\infty\frac{a^n}{n} = -\ln(1-a) \]

which is valid for $a\in\mathbb{C}$ which satisfies $\lvert a\rvert\leq 1$ and $a\neq 1$. This comes from a simple rewriting of the so-called Mercator series (replace $x$ with $-x$ in the Taylor series of $\ln(1+x)$ and then take the negative).

Then we have

\begin{align*}
\sum_{n=1}^\infty\frac{\cos n}{n} &= \sum_{n=1}^\infty\frac{e^{in}+e^{-in}}{2n} \\
&= -\bigl(\ln(1-e^i)+\ln(1-e^{-i})\bigr)/2 \\
&= -\ln\bigl((1-e^i)(1-e^{-i})\bigr)/2 \\
&= -\ln(2-e^i-e^{-i})/2 \\
&= -\ln(2-2\cos1)/2 \\
&\approx 0.0420195
\end{align*}

since $\lvert e^i\rvert=\lvert e^{-i}\rvert=1$, but $e^i\neq1$ and $e^{-i}\neq1$.